- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Choffnes, David (2)
-
Dubois, Daniel J. (2)
-
Feldmann, Anja (2)
-
Haddadi, Hamed (2)
-
Mandalari, Anna Maria (2)
-
Saidi, Said Jawad (2)
-
Smaragdakis, Georgios (2)
-
Kolcun, Roman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Internet of Things (IoT) devices are becoming increasingly popular and offer a wide range of services and functionality to their users. However, there are significant privacy and security risks associated with these devices. IoT devices can infringe users' privacy by ex-filtrating their private information to third parties, often without their knowledge. In this work we investigate the possibility to identify IoT devices and their location in an Internet Service Provider's network. By analyzing data from a large Internet Service Provider (ISP), we show that it is possible to recognize specific IoT devices, their vendors, and sometimes even their specific model, and to infer their location in the network. This is possible even with sparsely sampled flow data that are often the only datasets readily available at an ISP. We evaluate our proposed methodology to infer IoT devices at subscriber lines of a large ISP. Given ground truth information on IoT devices location and models, we were able to detect more than 77% of the studied IoT devices from sampled flow data in the wild.more » « less
-
Saidi, Said Jawad; Mandalari, Anna Maria; Kolcun, Roman; Haddadi, Hamed; Dubois, Daniel J.; Choffnes, David; Smaragdakis, Georgios; Feldmann, Anja (, IMC '20: Proceedings of the ACM Internet Measurement Conference)null (Ed.)Consumer Internet of Things (IoT) devices are extremely popular, providing users with rich and diverse functionalities, from voice assistants to home appliances. These functionalities often come with significant privacy and security risks, with notable recent large-scale coordinated global attacks disrupting large service providers. Thus, an important first step to address these risks is to know what IoT devices are where in a network. While some limited solutions exist, a key question is whether device discovery can be done by Internet service providers that only see sampled flow statistics. In particular, it is challenging for an ISP to efficiently and effectively track and trace activity from IoT devices deployed by its millions of subscribers---all with sampled network data. In this paper, we develop and evaluate a scalable methodology to accurately detect and monitor IoT devices at subscriber lines with limited, highly sampled data in-the-wild. Our findings indicate that millions of IoT devices are detectable and identifiable within hours, both at a major ISP as well as an IXP, using passive, sparsely sampled network flow headers. Our methodology is able to detect devices from more than 77% of the studied IoT manufacturers, including popular devices such as smart speakers. While our methodology is effective for providing network analytics, it also highlights significant privacy consequences.more » « less
An official website of the United States government
